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nonlinear Schrodinger equations 
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Quebec, Canada JIK 2R1 
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Abstract. Numerical intebtion schemes for coupled time-dependent nonlinear Schrodinger 
equations are examined using exponential splilling step methods. Exponentiation of the nonlinear 
potential term is reduced to the exponential of a kinetic energy term which can be calculated by 
fast Fourier transforms. High-order iteration schemes involving a minimum number of product 
operators are shown to yield highly accurate amplitude and phase. These new splitting methods 
a~ shown to be highly efficient both with respect to accuracy and integntion time 

1. htroduction 

Current research in many areas of physics, such as fluid dynamics, nonlinear optics, plasma 
physics, etc, requires studies of the solutions of nonlinear Schrodinger equations (NLSEs) [l]. 
In particular, systems of coupled NLSEs serve as examples of interaction between nonlinear 
modes [2-31 for which branching bifurcations can occur [4]. Recent developments in the 
theory of interaction of atoms with intense laser fields requires solutions of Maxwell- 
Schrodinger equations [5-71. In the non-resonant case, these can be reduced to coupled 

Previous studies of mEs have focused on simple non-coupled equations for which 
stable solutions exist. Various discretization schemes have been examined in order to 
preserve integrability [SI or higher-order conservation laws [9-1 I]. In particular, split- 
step exponential methods have been recently examined for the single NLSE [IO, 121. In such 
a method, one solves separately the linear and nonlinear parts of the NLSE. 

The split exponential method of solving coupled linear Schrodinger equations (LSBs) has 
been very valuable in order to treat time-dependent excitation of quantum systems. Thus, 
multiphoton transitions in molecules can be treated as systems of coupled LSES [13,14], 
since molecules are intrinsically multilevel systems. Pulse propagation in such multilevel 
systems leads to new general sine-Gordon equations [15]. We have recently shown that 
highly accurate solutions of systems of LSES can be obtained by using high-order split 
exponential methods [16,17]. Such exponential splitting methods go back to earlier work 
by mathematicians (Strang [18], Burstein and Mirin [I91 and, recently, Sheng pol) for 
solving hyperbolic and parabolic partial differential equations. In particular, as noticed 
earlier by Burstein and Mirin [19], phase accuracy of the numerical solution is very sensitive 
to the order of the integration schemes. This has been confirmed in OUI recent high-order 
extensions of the exponential methods to coupled LSES [ 16,171. 
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In the present paper, we apply the split-step exponential methods to two coupled NLSES, 
for which exact solutions are known in the integrable case. We will show that the exponential 
of the nonlinear potential term can be evaluated as a kinetic energy exponential by means 
of fast Fourier transforms (FFTS). The accuracy of both amplitude and phase is reported for 
various orders of accuracy of the integration schemes. 

2. Split exponential operator method 

We wish to examine solutions of the two coupled NLsEs 

im, + iulw,,  VI,^^ + 2 ( R d n I 2  + R1z1mI~)m = 0 

i w  + iuzm.x + + ~ ( R z I I v I I ~  + R221mIZ)m = 0. 
(1) 

Such a system of equations determines the dynamics of envelope waves with components 
(PI, pz) and phase velocities (U,, u2) in a nonlinear medium with the nonlinearity parameters 
R [ Z 4 .  Integrability of these coupled equations for particular values of the parameters 
v and R leads to stable, analytic solutions called solitons. We use these exact analytic 
solutions to evaluate the accuracy of our integration schemes. 

We write the coupled equations (1) in the general form 

av 
at 
i- = ( A  + B)yl 

where A contains all spatial derivatives @ / a x .  a2/ax2) and B contains all potential terms 
V ( x ,  t ) ,  i.e. functions of x and f .  For time-independent potentials B = V ( x ) ,  the exact 
solution of equation (2) is given by 

v ( x ,  t + A 0  = explA(A + B ) l v ( x ,  t )  (3) 

where A = iAt. Expressing exp[A(A+b)] as products of exponentials of A and B generates 
high-order approximations to equation (3). Various authors have examined high-order 
product schemes [16-231. In the case of Schrodinger equations, since the integration time 
step A is imaginary, symmetric products automatically conserve the energy L2 norm of the 
total function [16,17,22-241. These are called unitary schemes because S'(A)S(A) = 1 at 
all times. We therefore enumerate below various product formulae which preserve unitarity 
of the total function ~ ( x ,  t ) :  

AA&B 

AA/ZeABeAA/Z 

&(A) = e  

&(A) = e 

where 2w3 + (1 - 2 0 ) ~  = 0, 
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where 

w3 = 0.784513610477560EO 

wz = 0.235 573 321 335 9357E0 

= -0.11776799841887El 

WO = I -2(w +oz +y) 

and 

S9 (A) = S3 (*A) S3 ( m a l )  S3 ( W ) S 3  ( W d ) &  (03 A) S3 (@A) S3 (01 A) S3 (wah) S3 (wr A) 

x S3 (%A) s3 (w3A) S3 (04A) S3 (wd) S (~4)  S3 (*A) (8) 

where 

Y = 0.629030650210433EO 

W6 = 0.136 934 946 416 6871E1 

Ws -0.106458714789183El 

w4 = 0.166335809963315El 

0 3  = -0.16789692825964OEl 

wz = -0.155946803821447E1 

01 =0.311790812418427EO 

WO = 1 - 2(Wl + 0 2  + uJ3 + W4 + 0 s  + 0 6  + w). 

The accuracy of each scheme is given by the leading errors: 

Sz has two exponential operators, S3 has three, SS has seven, S, has 15, and S9 has 31. 
According to Suzuki [22,23], all the formulae (4)-(8) have a minimal number of exponential 
operators for the indicated leading errors. 

It iS clear that all symmetric products (equations (5H8)) give leading errors which are 
of odd order with respect to the integration step A. This is due to the fact that symmetric 
products maintain unitarity after every integration step as we show now. The product of 
two such operators or propagators has an nth-order leading error: 

S,(AI)S,(AZ) = exp[(A + E ) @ ]  + A d 1  +Cn(A; + $) + ' .  (10) 
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where C, is the coefficient of the order n correction of each propagator S,, i.e. CnAn. Thus 
since S'(A) = S(-A) for Hermitian operators A ,  E ,  then setting A,  = -Az and using the 
fact that the unitarity condition S'S = 1 must hold, we readily obtain that C, = 0 for n 
even and C. # 0 for n odd. Hence all leading errors involve odd powers of the order only. 
Thus S, (equation (4)), which is not symmetric, has an even-power leading error. 

The unitary exponential product representations for exp[A(A f E ) ]  enumerated above 
apply to time-independent potential matrices B only. Thus, iteration of equations (3) using 
the product scheme (5)-(8) allows for efficient numerical integration of time-independent 
LSEs. In general, it was found that S7 was the most efficient in producing the highest 
accuracy for a given integration time for both amplitude and phase of linear solutions 
p(x, I) of both single and coupled equations. Furthermore, phase accuracy was generally 
found to be poor at the low-order accuracy level (&), so that for proper phase description, 
higher-accuracy schemes such as Ss and beyond were found to be essential [16,17]. 

For timedependent potential matrices B = V ( x ,  f), integrations of exp[B] itself over 
the time interval need to be addressed consistently [17,24]. This problem was previously 
addressed for B linear, i.e. independent of q ( x ,  f). We next treat this problem in detail 
for the single NLSE in order to illustrate the subtleties involved when B is nonlinear, i.e. it 
depends on u,(x,  f). 

A D Bandrauk and Hai Shen 

3. The formal solution of the NLSE and approximations 

We consider the single (uncoupled) NLSE 

jvi + vXr + q1vl2 = 0 (11) 

(U, is a complex-valued function, q a real parameter. i2 = -I), with the initial condition 

U,(x, 0) = g ( x )  x E R, 

Equation (1 1) has the formal solution to third-order accuracy [17] 

In [16] and [171, we proved that formulae (5)-(8) can be used to approximate (12) with 
the same order of leading errors as in (9). By assuming I U , ~ ~  is a constant value at r only, this 
gives low-order approximations which have been used in previous work on mSEs [lo,  121. 
We next show how to improve such approximations. Using the middle point formula [25],  
we have 

1 Iv12dt = AIlp(1 + Ar/2)IZ + O(Al3). (13) 
[+At 

Next we estimate I u , ( ~  + At/2)I2. Using a Taylor expansion, we readily obtain 

u,O + At) = U , @ )  + At~, t ( t )  +O(AtZ). (14) 

Substituting equation (11) into equation (14), we next get 

q(f + At/z) = p(f) + iAt(co,,(t) + q1a(f)lzq(r))/2 f O(At2). (15) 
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Using the conjugate to equation (15), we obtain 

I& + At/2)IZ = v(t + At/2)rp*(t + At/2) 
= (rp(t) + iAtrpxp,,(O/2)(v"(t) - iA.tcoXt)/2) + O W Z )  
= exp(iAta2/axz/2)rp(t)* exp(-iAta2jax2/2)rp(t) + o(h t2 )  
= I e ~ p ( i A t ~ ~ / a x ~ / 2 ) ~ ( t ) ~ ~  + O(At2). (16) 

Thus a high-order estimate of the potential integral is obtained, i.e. 
l + A l  

lpl'dt = Ar[ exp(iA.ta2/ax2/2)cp(t)[z + O(At3). (17) 

What we have therefore shown is that to O(AtZ) accuracy the nonlinear potential term 
in the exact propagation scheme (12) can be replaced by the kinetic energy term only, i.e. it 
allows us to sum to all orders the gradient corrections to ~ ( t ) .  This should be particularly 
useful for non-smooth soliton envelopes. 

Thus with A = az/ax2, and B equal to equation (17), clearly by further use of the 
iteration formulae ( 5 x 8 )  in equation (17), one can generate formulae of higher-order 
accuracy. This higher-order procedure can obviously save computation time, since equation 
(17) is calculated in the previous time step at each iteration and involves single m s  as 
shown next. This is a considerable improvement over previous exponential schemes for 
NLSES [lo, 121. 

4. Numerical experiments 

In this section, we solve (a) the single NLSE and (6) two coupled NLSEs. All calculations 
were performed on an IBM NSC 6000/530 workstation (14 megaflop performance). 

The wavefunction is discretized over the x-interval [a, b] and the time is discretized 
over the t-interval [0, TI. The Laplace operator A is calculated by FFr techniques whereas 
the function ~ ( x .  t )  occurring in equations (12) and (17) is discretized. Thus, all discrete 
space points are simultaneously propagated in time according to the iteration schemes based 
on S,. 

4.1. single NLSE 

Equation (1 1) has a single soliton solution, 

v(x ,  [) = e-i(b-3r+n/2) sech(x - 42). 

We take as the initial condition 

rp(x, 0) = e-'(2+"/z)sech(x). (1% 
We use the following parameters: a = -20, b = 240, T = 50, space points = 1024. 

In table 1, we report numerical results, for S,, S3, Ss, S, and Sg, where we have defined 
the mean L2 errors as L2 error = (Ax re,')'/*. where ei = 1s" - s'l, s" is a numerical 
solution and s' is an exact solution. The errors in amplitude AMP and phase Pm are 
compared to the exact solution (equation (18)). 

Clearly both SZ and Sg are not efficient. S2 converges too slowly, whereas S, costs lots 
of computation time (CPU) since it has too many exponential operators. We have found 
similar results for time-independent [16] and time-dependent [17] LSEs. 

The results in table 1 show that S, is the most efficient iteration scheme. Thus, although 
S7 comprises 15 exponentials, the high accuracy (error O(At7)) at each iteration step makes 
this scheme economical for high accuracy. 
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Table 1. Xme inlegmion comparisons for the single solilon solulion (19) for T = 50 

S. At AMP em01 PHA en01 CPU (S) 

Sz 0.0125 0.82E-02 0.22 95 
0.005 0.29E-02 0.90h01 191 
0.0025 0.15E-02 0.44E01 355 
0.00125 0.77E-03 0.22E-02 771 

S, 0.025 0.22E-02 0.81E-01 82 
0.0125 
0.005 
0,0025 

Ss 0.1 
0.05 
0.025 
0.0125 

s7 0.2 
0, I 
0.05 

s, 0.1 
0.05 
0.025 

0.56302 0.21E-01 168 
0.89E-03 0.32&02 337 
0.22E-03 0.828-03 656 

0.31E-0.1 0.24 42 
0.ZOE-02 0.73E-02 85 
0.13E-03 0.468-03 173 
0.79E-05 0.31E-04 351 

0.23E-01 0.48 43 
0.43E-03 0.72E-02 83 
0.57E-05 0.548-04 164 

0.15 I .85 169 
0.97E-04 0.91E-02 333 
0.398-06 0.60E-05 650 

-20 & I < 240, number of space points = 1024. 

4.2. 'live coupled W I S E S  

Next we consider the coupled equations (1) and first apply the transforms 

(01.2 = @1,2exp[iu?,,t/4 - ~ U I . Z X / ~ I  (20) 

to obtain the simpler expressions 

These are coupled nonlinear parabolic partial differential equations to which we apply again 
the high-order split exponential operator schemes developed above. Setting R12 = R ~ I  > 0 
allows us to find stationary solutions of equation (18). among which are stationary non- 
topological solitons [4]. 

Exact soIutions with the single solitons of equations (18) are given by 

where 

U = RIi/Riz c = Rzz/Riz p2 = (a - l)/(c - 1) 6 = (UZ - V ~ ) / R " ~  (24) 
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Table 2. Time integralion comparisons of coupled N L S U  for T = 10. 

S, At AMP! erroI MAL errOr AMP2 e l l O l  PBA2 ellor CPU (S) 

5-2 0.01 0.55E-M 0.71 0.31E-02 1.79 64 
0,005 0.25E-02 0.70 0.14E-02 1.45 125 
0.0025 0.13E02 0.69 0.72E-03 0.91 235 

S3 0,025 0.388-02 0.53E-01 0.15E-02 0.53E-01 28 
0.01 0.61E-03 0.88E-02 0.24503 0.88E-02 68 
0.005 0.16E-03 0.23E-02 0.59E04 0.21E-02 138 

Ss 0.04 0.14E-03 0.24E-02 0.54E-04 0.24E-02 49 
0.02 0.80E-05 0.14EO3 0.32E05 0.15E-03 98 
0.01 0.55E-06 0.91505 0.21E-06 0.91E-05 198 

s-, 0.1 O.11E-02 0.43 0.47E-03 0.39 49 
0.05 0.19E-04 0.22E-02 0.74E-05 0.21E-01 96 
0.025 0.288-06 0.98E-05 O.llE06 0.998-05 185 

-25 < x < 120, number of space points = 1024. 

Table 3. "e integration comparisons of coupled NLSU for T = 100 

S, At  AMPI error PHAI error  AMP^ error PHAZ error CPU (s) 

SI 0.01 0.22E-0.1 0.93 0.538-02 1.01 639 
0.005 0.39842 0.78 0.18E-02 0.71 1265 
0.0025 0.16E-02 0.41 0.698-03 0.40 2486 

s3 0.02 O.23EOl 0.13 0.13E-01 0.12 334 
0.01 0.S8E-02 0.31E-01 0.30E-02 0.31E-01 660 
0.005 0.14E-02 0.758-02 0.758-02 0.778-02 1302 

Ss 0.04 0.13E-02 0.64E.01 0.69E-03 0.64E-01 497 
0.02 0.83E-04 O.47E-03 0.43E-04 0,498-03 974 
0.01 0.52E05 0.298-04 0.27E-05 0.3OE-04 1907 

S, 0.04 0.69 2.93 0.38 2.98 1158 
0.033 0.72E-M 1.13 0.47.E-02 1.71 1360 , 
0.031 0.92E-05 0.67E-04 0.48E-05 0.66E-04 1476 
0.025 0.27E-05 0.18504 0.13E-05 0.20E-04 1824 

-25 4 x < 120, number of space points = 1024. 

and 11 and LZ satisfy the relation U = (A2 - S2/4)L1. 
Unlike numerical procedures for solving coupled LSES [17], the diagonalization of the 

exponential mah'ices exp[B] becomes unnecessary, since the Hamiltonian of coupled NLSES 
is simpler than coupled LsEs. One can therefore directly use the newly derived expression 
(17) for 1@112 and 1q52l2 from the last section, which have the accuracy (At') to propagate 

&(t + At) = exp [ i ~ ' + A r ( ~ Z / ~ * z + 2 ~ ~ ~ 1 9 ~ 1 2  +2R121@~/~)df]8t(C 

&(t + A t )  = exp [ i 1 (a2/ax2 + 2R~11911* + 2R~z14d2)dt @Z(t). 
(25) 

1 L t A l  

We take R11 = 2, R I ~  = I ,  RZZ = 4, uz = 2, uz = 1, 11 = 1 and U = 1. First we show 
results with the total time T = 10, a = -25, b = 120, space points = 1024. In table 2, 
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Table 4. Time integntion comparisons of coupled NLSVI for T = 1000 

S. At AMPI m r  PHAI e m r  A M P Z ~ ~ ~ O ~  P H . U ~ ~ O ~  CPU($ 

S? 0.01 0.90E-01 0.90 0.38E-01 0.99 45312 
0.005 0.22E-01 0.52 0.98E-02 0.54 91764 

S, 0.01 0.63E-01 0.31 0.27E-01 0.29 59609 
0.005 0.15EOI 0.77E-01 0.66E-02 0.79E-01 116742 

S, 0.04 0.15E-01 0.62 0.648-02 0.60 43511 
0.02 0.88E-03 0.458-02 0.388-03 0.438-02 86583 

s, 0.05 1.26 0.92 0.72 0.98 83033 
0.025 0.45 0.64 0.34 0.59 163955 

-25 < x < 1020, number of space points = 8192. 

we present, for S2, S3, Ss, S,, the L2 errors for the amplitudes AMPI, AMP2 and the phases 
PHAI. PHA2 of the solutions #,, $2 as functions of the computation time in cpu seconds. 
The table shows that Ss and S7 require fewer CPU seconds and give the best results. 

We then extend the total time T = 10 to T = 100 with the other parameters the same 
as before in order to see how the errors accumulate. This is reported in table 3 for the total 
time T = 100, again for the schemes S,, S3, Ss, S,. In the accuracy range of IO-* to 
S, gives the best results. 

We next extend the total time to T = 1000 and a = -25, b = 1020, space 
points = 8192. Results for Sz, S3, S5, S, are shown in table 4. For this longer propagation, 
the numerical efficiency of S5 is superior to other higher-order iteration schemes. Thus, for 
long integration times, the higher-order scheme S, begins to lose efficiency. This is due to 
the fact that S7 involves 15 exponential operators as compared to SS with seven exponentials 
and S, only three exponentials [ 171. 

In conclusion, we have shown that the high-order split-step exponential methods 
(equations (.5)-(8)), modified by the high-order estimate of the potential integral (equation 
(17)), can give new highly efficient algorithms for solving coupled time-dependent NLSES. 
We are extending these methods to hyperbolic-parabolic equations such as OCCUT in 
MaxwellSchrodinger equations [5-71. 
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